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FUNDAMENTALS OF PLASMA SIMULATION

David W. Forslund

Applied Theoretical Physics

Los Alamos National Laboratory
Los Alamos, New Mexico 87545

ABSTRACT. With the ircreasing size and speed of modern supercomputers, the
incredibly complex nonlinear properties of plasmas in the laboratory and in space
are being successfully explored in increasing denth. Of particular importance have
been numerical simulation techniques involving finite size particles on a discrete
mesh. After discussing the importance of this means of understanding a variety of
nonlinear plasma phenomena, we describe the basic elements of particle-in-cell sim-
ulation and their limitations and cdvantages. The differencing techniques, stability
and accuracy issues, data management and optimization issues are discussed by
means of a simple example of a particle-in-cell code. Recent advances in simulation
methods allowing large space and time scales to he treated with minimal sacrifice in
physics are reviewed. Various examples of nonlinear processes successfully studied
by plasma simulation will b~ given.

1. Introduction

The many degrees of freedom in plasmas leads to an incrediole variety ol plasma
phenomena on a spectrum of space and time scales. Nonlinear phenomena in plas-
mas are known to have many more diverse properties than even compressible fluid
dynamics. Various theoretical modcls have been developed to deseribe the observed
plasma properties, but these, of necessity, req: ire many simplifying assumptions
whose vrlidity is many times questionable and difficult to verify. Although weal.
turbulence theory has been successful over a limited range of parameters, fre-
quently the nonlinearity of some plasma process is so strong that it breaks down.
It is in this regime that plasina simulations are the mosy uscful and the easiest
to perform. In regimes where weak turbulence theory is reasonably accurate, par-
ticle simulation is the most expensive and difficult to verform. Thus there has
been considerable complementarity between weak turbulence theory and plasma
simulation, each having its own domain of importance.

For more than 15 vears the simulation of plasma phenomena on large scale
computers has plaved an important role in explaining many observed plasma phe-
nomena and in verifying or disproving various nonlincar plasma theories, The large



variation in time and space scales present in typical plasma problems has contin-
ued to present a challenge to the simulationist. Today, as computers continue to
increase in size and speed the nonlinear plasma problems that can be studied on
the computer have become even more realistic. As an introduction to computer
simulation techniques of plasmas, we will review the basic methods and illustrate
their use on problems of significance.

2. Basic Equations

2.1 Liouville Equation

The equations usually used to describe a plasma are Newton's laws and Maxwell's
equations:
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Almost all classical plasnia physics involves the solving of these equations with
various approximations. 1 he simultaneous solution of these cquations for a large
collection of particles is equivalent to the solution of the Liouville equation for the N
body distribi.tion function. Solutions to these equations exhibit collisional effects
determined by the structure of the & functions in the above equations. VUsually
one speaks of a plasma as having a large number of particles per Debye sphere, in
which case only terms to the lowest order in this plasma parameter are kept.

2.2 Vlasov Equations
In this collisionless limit, we have the Viasov equation system:
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Although much successful effort has gone into solving Egs. (2) for ti.e distribution
function directly|Sakanaka, et al., 1971; Denavit, 1972}, the methods have been
difficult or expensive to extend to 2 dimensions. The traditional form of plasma
simnulation |Buneman, 1967, involving particles is equivalent to solving the Vlasov
equation by the method of characteristics, where the particle orbits are the charac-
teristics of the Vlasov equation. Since the particles have finite size, however, they
exhibit properties of the original Liouville system from which the Vlasov equation
is derived. Consequently, plasma simulation codes exhibit many kinetic properties
of plasmas including bremsstrahlung, collisional excitation and damping of plasma
waves. With care one can study these phenomena directly with a simulation code.
However, usually the collisions are not desircable, so one must take care to reduce
them .

2.3 GGeneral Methods

To solve Eqs. (2) one must represent the spatial coordinate as a discrete grid and
advance the equations over discrete time intervals or steps. Stability and accuracy
conditions dictate the choice of the space and time steps. Early methods in one
dimension treated particles as points moving through each other. However, because
one cannol have as many particles per Debye sphere in the computer as one has
in most plasmas, this method results in an excessively high noise level (and hence
collisional level). To reduce this problem, particles are made to be of finite size
and to deposit information onto and take inforrnation from a grid. In other words
the é functions of Egs. (1) are made finite in width. This drastically decreases
the noise leve] by significantly altering the collisional process, Particles no longer
undergo large angle collisions from a close approach but experience only small
angle collisions as they pass through one another. As a consequence, the finite size
particle simulation method is mest suited for studying collisionless plasmas. In this
limit collisions can be added back in a controlled manner. To the lowest order then
one can view the particle-in-cell simulation technique as a Monte Carlo solution
to the Vlasov equation by integration along its characteristics. This Monte Carlo
aspect of the solution illustrates why problems that are sensitive to the behavior of
particles in a small region of velocity space are difficult to handle. ’'roblems that
depend primarily on the bulk plasma properties, albeit high nonlinear, are most
readily solved by this technique.

The solution to Eqs. 2 are obtained by integrating in a series of discrete
time steps the orbits of a large number of finite size charged particles (1ypically
104 10%). The lagrangian positions of the particles are used to deposit the charge
and currents onto the fixed discrete grid, The field equations are then solved on
this discrete grid Sl.ypicully 10% 10" cells) to obtain the self-consistent ficlds for the
next time step, The discrete field points are then interpolated to form a continuous



ficld variable to advance the particle orbit. The two important numerica! aspecis
are the space and time diflerencing and the interpolation of the ficlds from the grid
to the particle and the particle charge onto the grid (i.e. the shape of the particle).
A variety of techniques have been employed successfully and 1 will discuss only a
few.

3. A One Dimensional Electrostatic Code
3.1 Basic Equations

To clarify the preceding general introduction, let us consider what is involved in
writing a simnple one dimensional electrosiatic plasma simulatinn code. As an intor-
esting generalization of the usual one dimensional code we consider the equations
for a spherical plasma and include the case of a space and time varying grid on
which the equations are solved. The basic equations to be solved are:
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In Eq. (4) [ is the angular momentum of the particle and the additional term in
the momentum equation is the centrifugal force.

3.2 Space and Time Differencing

We begin b first discussing the spatial differencing for these equations. The
method we describe here is a simplified ane dimensional form of that used in the
new two dimensional code, CELESTE, developed by Brackbill and Forslund. We
consider a set of N mesh points, r(1),..., rLN), that define the cell centers. These
points can be arbitrarily spaced although the 1ate of change should be small com-
pared to the cell size in order for the differencing to be reasonably accurate. We
first consider how to deposit charge onto this grid, as shown in Eq. (6), in order
to solve Poisson'’s equation, Eq. ?3 . The simplest procedure is to consider the
particles to have zero size and to deposit all of the charge onto the grid point
that is closest to the particle. This procedure is known as the nearest grid point
(NGP) method. Although simple, it introduces large fluctuations on the scale of
the grid point spacing as the particles move from grid point to grid point. These
flustuations are a form of collisions as mentioned in Section 2. Instead we take
the particles to be of finite wize and deposit charge on the grid in proportion to
the overlap of the particle with each cell. Although a varioty of particle sizes are
possible, Langdon and Birdsall [ 1970) hawe shown that a particle size comparable



with the cell size introduces the least amount of numerical error. For simplicity
of calculation we choose a particle to be the size of the cell in which it is located.
Since the grid spacing can vary with the index i, the particle size can change as
it moves through the grid. However, the charge on a particle does not change.
The shape of the particle is defined by the interpolation formula to and from the
grid. For a uniform mesh a gaussian shape for the particle has also been used
successfully[Lin, et al., 1974].

W= use logical or natural coordinates, z,, to describe the position of ti.e par-
ticles such that the cell index is given by:

i = integer(z,). (8)

and the {ractional part of z, determines where in the cell the particle is located.
The weights applied to cells 1 and 1 + 1 are given by:

Wiy = Ip— 1,

w; = 1.0 - wyy (9)

The particle position then is converted to physical coordinates by:

Tp = Wil + Wiy T4 (10)

Kceping the logical position instead of the entirely equivalent physical one makes
it easier to determine the cell location of the particle. The reverse process is more
coniplicated and is done only once per time step. Similarly, the electric field, E,.,
used to advance the particle velocity is interpolated with the same weight functions
from the grid. The time centered acceleration and particle position advancement
arc given by:

2
vz iovag (Segi, U
vl = v) + (mPE,, + m,’,(rj)“) dt (11)
r',"," - ri’; + vi",’ 1/24y - (12)

where the superscript j is the time step index. The quantity, vg, can be calculated
from the conserved angular momentum at any time. We then usc a rapid zero point
scarch to determine the new natural coordinate of the particle. 1' . - particle does
not change cells, this can be done with only one iteration. With this new natural
coordinate, new values of w,; and w;, ; are calculated and the charge is interpolated
onto the grid:

¢ = ¢ 1 wiqp

41 = Qi+1 -+ wig1qp (13)

If desired the grid can be moved before this new natural coordinate of the particle is
calculated without introducing any diffusion into the systemn. Adding up the charge
from all the particles yields the total charge at each grid point. The solution of
Poisson’s equation gives E7'! and the time cycle is completed.



The solution of Poisson’s Equation in onc dimension is simple. In differenced
forin the equation is:

(r2E)is1y2 = (FPE)i-yj2 + 4n (pridr), (14)

The term pridr is the total charge in a cell calculated abhove. The cell centered
electric field then is obtained by averaging the quantity r?E at the cell edges:

E; = (('2E)i+l/2 + (r?E),- 1/2) /('?—H/z + ':2— 1/2) (1.5)

where r,41/2 = (ri + r.4:)/2. Boundary conditions are applied by specifying E
at the edge of the first cell. Alternatively Poisson’s equation couid be written in
terms of the electrostatic potential and solved with a tridiagonal solver and ‘enter
differenced to obtain E at the cell centers.

3.3 Boundary Conditions

An additional problem exists during the charge accumulation stage. Due to the
finite size of the particles, some charge will be deposited outside the grid from cells
at the edge of the system. An extra cell is added at each end to contain this charge.
T*" o charge accumulated in these “ghost™ cells is added back onto the physical grid.
In the Cartesian case one may also choose to have periodic boundary conditions,
in which case the charge would be added into the first real cells at opposite ends
of the grid.

Finally, the particles themselves must be checked for crossing of the system
boundaries so that they may be absorbed, reflected, or recreated at some new ve-
locity. These operations are done right after the new particle position is calculated
before the new natural coordinates are calculated for redepositior of charge onto
the grid.

This completes the basic description of a simpic one dimeusional electrostatic
code. The algorithms described above are readily extendable to two dimensions.
The appropriate cell size, time step, and number of particles that need to be used for
any given problem is determined by numerical stability and accuracy considcrations
discussed below.

3.4 Particle Loading

We digress for A moment on how to load the particles with an arbitrary donsity
distribution. Suppose we have N simulation particles which we would like to rep-
rescnt the initial arbitrary charge density, p(r). The probability of a particle being
at the positior r is given by

f:l p(r')r'2dr’
P(r) = [T plryrdr (16)

where ry and 7, are the upper and lower limits of the system. We can then
randomly pick a number P from 0 --» 1 for each sirnulation particle and use the
inverse function r(I’) to give the particle position. There is less noise in the initial



loading. however, if onc uniformly divides the interval 0 — 1 into N parts. The
charge associated with each of the particles is

1 ™
q = I_V—/ pridr (17)

which, because of the small value of N, is much larger than the charge on an ion
or electron. That is, we see that each particle here represents a collection of a
large number of ions or electrons and hence is sometimes called a macroparticle.
This loading technique is readily extendable to two dimensions for arbitrary two
dimensional density distributions and inay also be used for generating particles
with sorme specified velocity distribution.

4. Data Management

Typically fo. large scale plasma simulations, modern computers do not have a
enough larg: memory to contain all of the particle data. Since external storage
is usually slow compared to the fast memory in a modern supercomputer, a well-
tuned multi-channel input/output (1/0) paclage is needed to interface with this
slow storage (usually disks). The fastest method is not always the best due to
the environment of other users on the machine and the algorithms used to charge
for computer resources. However, generally synchronous 1/0 (in which the 1/0 is
going on simultaneous with the computing) on at least one channel each for input
and output is required. The simplest form of 1/0 divides a buffer into three parts
doing input into 1/3, computing on 1/3, and output on 1/3. In a multi- channel
method there may be separate buffer for irput and output. The package written
for WAVE code on ithe CRAY-X/MP computers issues mu!tiple simultaneous 1,0
requests on each channel and packs the particle data in order to maximize the
1/0O rate for a given buffer size. An interrupt driven 1/O scheme has not been
found to be fast enough to obtain data from the disk without missing revolutions
on the disks. Also available on some modern supercomputers is an intermediate
speed memory device (the SSD on the CRAY- X/MPZl which is usually more than
adequate to keep up with the particle pushing. In this case a sophisticated 1/0
algorithm is not required.

5. Optimization
b.1 Vectorization

Most modern supercomputers have very high speed vector performance compared
with their scalar performance. It is important in the coding process to ensure
that the critical sections of the code are as vectorized as possible. Within the
particle mover itself most of the operations are vectorizable. For example, in the
one dimensional clectrostatic code described above Egs. (7), (8), (10), and (11)
are - omplete vectorizable. However, because the cell index is random from one
particle o the next, the interpolation from and to the grid (Kgs. (9) and (12))
ic not. These two parts need to be in separate do loops from the vectorizable



operations to ensure maximuin speed. The electric field accumulation in Eq. (13)
is also not vectorizable.

On the CRAY-X/MP a new hardware instruction has been added which now
allows the interpolation of Eq. (9) to be completely vectorized. However, the scat-
ter operation of Egs. (12) remains non-vectorizable because of the accumulation.
Supercomputers which have this hardware gather-scatter and a fast vector sum
routine would allow complete vectorization of the particle mover.

5.2 » %1y Language

In the WAVE code the particle movers have been hand coded in assembly language
to make optimal use of the CRAY-X/MP. We find that both the vect..r and scalar
operations are avout twice as fast as they are in FORTRAN. This should always
be considered when the code is going to be used heavily with infrequent changes.
If a careful isolation of parameters for the particle mover is done, the assembly
language code will not have tc be modified often even though the remainder of the
code may change a great dez With the WAVE code this modularity has allowed
the same assembly language .overs Lo be used for over 8 ycars on the CRAY-1
with cssentially no changes, even though the remainder of the WAVE code has
been almost entirely rewriiten.

5.3 Multiprocessing

With the arrival of multiple processors in supercomputers it is possible to reduce
the running time by processing more than one group of particles at a time. This
does not reduce the CPU t.me of a given job (it actually increases it slightly) but
may reduce the turn around time when this is most important. However, care must
be taken because multiple groups of particles may try to access a shared piece of
memory at the same time. In particular, the charge weighting process may require
scparate copies of the charge array for each task followed by a combining at the
end of the cycle to avoid overwriting data. Some computer hardware does allow
for a memory lock out when another processor is accessing the memory, hut this
still could result in some inefficiency. In the CELESTE code we have sought to
overcome this problem by sorting the particles by means of linked lists. There is
some additional overhead for this, but it allows for complete separation of particle
pushing tasks. In addition, it allows for the inclusion of momentum and cnergy
conserving binary collisions in a fully vectorized form.

6. Numerical Stability
6.1 Time Step Constraints

The discretization of time and space in simulation codes introduces accuracy and
stability conditions. In the usual explicit particle code in which information at
time level j is used to advance the fields and particles to 5 + 1 there is a limit to
the size of the time step before the code becomes unstable due to time aliasing.
This is usually w,6t < 2. Therefore, one cannot avoid the electron dynamics in an
explicit plasma si.nulation code by taking very iarge time steps. One must have a
time step large enough to resolve the highest frequency in the system.



For electromagnetic codes including the displacement current one has an ad-
ditional constraint that can be even more severe. The timestep must satisfy the
Courant condition, 6f < c¢bz. Again this arises because of the necessity of resolv-
ing the highest frequencies in the system. Other instaliilities involving Cerenkov
processes have also been shown to exist|Godfrey, 1974,1975|

6.2 Finite Grid Instability

The aliases arising from the spatial grid are coupled together by tne interpolation
method in a complicated way. In general, it is found that if the Debye length,
Ag > 6z/2, the numerical instabilities are almost entirely absent both for dritting
and stationary plasmas because modes with the largest wavenumber, kpa-6z ~ 1
are heavily Landau damped. For large éz the incorrect of damping on the aliases
can overcome the physical Landau damping at k., and hence can cause strong
instability. The addition of strong smoothing at large k can alleviate these eflects
somewhat.

The properties of the nunerical instabilities depend on the details of the par-
ticular differencing scheme. H. R. Lewis[1970] has suggested a differencing scheme
derived from the system Hamiltonian that conserves energy in the limit of ¢ — 0.
The only difference from the method described above that conserves momentum
exactly but not energy is that E is defined at the cell edge and the particle velocities
are advanced with the NGP method. As one might expect, the method is some-
what noisier than the usual method and, in practice, does not conserve energy well
because of the finite ét. 1f, however, one introduces smoothing on the charge den-
sity, the two methods conserve energy about equally well. For the physically stable
case of a Maxwellian electron plasma drifting through a fixed ion background on a
uniforinly space Cartesian grid wich periodic boundary conditions, we compare the
stability properties [Lindman, 1970; Langdon, 1970a,1970b; Okuda, 1972] of the
two methods. The energy conserving method is stable for zero drift while the mo-
mentum conserving method is not. For drift velocities about equal to the electron
thermal speed, the energy conserving method becomes unstable and the growih
rate of the momentum conserving methoa diminishes sharply. For 6z = 10y, the
maximum growth rates in both cases are about 0.02wpat kA; = .16. For smaller
grid size the growth rate drops off sharply.

7. Two Dimensional Electromagnetic Codes
7.1 Units

We now discuss the basic difference equations for electromagnetic plasma simu-
lation in two dimensions. Belore considering the difference equations, let us first
discuss the system of units used in the two dimensional WAVE code|Morse and
Nielson, 1971]. We find it useful to normalize the density to some charge density,
n,, the charge to mass ratio to some g,/m, and velocities to the speed of light.
Time ihen is normalized to w,, = (47n.q3/m,)!/2, the electric and magnetic ficlds
are in units of (4mn,mqc?)!/? and the potentials in units of m,c?/g,. Maxwell's
equations then have no numerical factors and are dimensionless. Several addi-

tional nontrivial advantages result from uhis system of units. The equations are
automatically ordered so that one can compare the size of various terms. Also, the



dimensionless equations imply that a given simulation is the solution to a whole
class of physical problems that are scaled by the units of time and fields. This re-
duces the likelihood of unnecessarily runring a whole series of equivalent. problems.
It is easy then lo convert the scaled units into the physical units of a problem of
interest. Doing this at the outset can shed considerablc insight into the physics.

7.2 Field Equations

The interpolation techniques used in one dimension are immediately extended to
two dimensions. For simplicity we consider the case of a uniformly spaced mesh in
which the particle is the same size as the cell spacing. Here the amount of charge
and current deposited into each cell is proportional to the area overlap in the cell,
hence the term “area weighting” or bilinear interpolation.

In the WAVE code the equations are written in term of the vector and scalar
potentials for historical reasons. Langdon and Lasinski |{1976] have shown that
an E and B based code has essentially identical properties provided the equations
are differenced properly. Although an explicit wave equation solution exists in the
WAVE code, we describe here the diflerence equations that allow for ét to exceed
the Courant limit by controlling the high frequencies allowed in the systemNizlson
and Lindman, 1972]. The equations for Ampere's Law and Faraday’s Law give rise

to the wave equation for A:

V2(A%2 4 24"2 4 A-1/%) /4
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The superscripts indicate the time levels of the various terins. These equations,
of course, are solved for the 3/2 time level using the earlier values as input. The
parameter 3 is used to alter the dispersion relation so ihat timesteps larger than
the Courant limit can be used. The Coulomb gauge is used so that the transverse

current Jr, ia given by:
Jr=J~-V—.
T at (22)
In order to guarantee that V- A=0and V- Jr = 0 so that charge is conserved at
each time step, we must solve the auxiliary equation:

g2

Sy = V. (23)



where ¢ is at the whole time step and Jis at the half time step and use thise d¢/at
in Eq. (22). The ficlds E and B are computed by:

E'= -V¢! — (432 - A1/?)/8t

B = Vx (A1 4 A1%)2 (20)

The electrostatic potential is obteined from
V2¢l = pl (2-))

All ficlds, charge and currents are defined at cell centers. Given the currents at the
half time step and the charge at the whole time step the fields can be advanced to
the next whole time step with the vector potential Leing one half time step ahead.

The field equations are solved with a direct two dimensional Poisson solve. The
method proceeds by Fast Fourier Transform in the y direction followed by Gaussian
elimination in the x direction on the linearly independent Fourier components.
The result is then Fourier transformed back to physical space. This allows for
arbitrary boundary ccnditions in x. General boundary conditions in y are ootained
by choosing an appropriate set of basis functions for the FFT algorithin. 13oundary
conditions that have been implemented in the v direction besides periodic include

Neumann and Dirichlet for A and ¢. Even more general boundary conditions arc
avaijlable in x.

7.3 Puarticle Equations

The particle velocities are known at the half time step while 7, E, andH arc known
at the whole time step. If we define h = ¢6t/m, the centered form for the equation
of motion |Morse and Nielson, 1971 is:

F2 o gie g Iz(E“l + i x BY) (26)
However, we do not yet know ', By using @' = 4(#%2 + #/2), we can solve
this equation for ¥%/2 implicitly. We do this by taking the dot product and cross
product with B!. The time centered reversible cquation then is

p h? -~ - = . . h? . .
B.B(vlz(l " B-B)+ hE A 172 x B) + 2--1'4' B

[~ )
+
il o

% Bt S (27)
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If we wish to keep terms only to order (6¢)2 we can drop the lzst term. For the
relativistic equations a iimilar expression can be derived. The position advance-
ment is as it was in 2ne dimension. The velocities are interpolated onto the grid
al a position corresponding to the advance of one- half time step to obtain J /2,
The charges are interpolated on the grid at the whole time step.



8. Implicit Techniques
8.1 Motivation

In studying the nonlincar properties of many plasma systems we are primarily
interested in the long time and long scale length plasma behavior. For exaniple,
in collisioniess sl ocks we frequently are interested in time scales long compared
te the ion gyro frequency and long compared to the ion gyro radius. For space
plasmas there are over 10® Debye lengths in an ion gyro radius and over 10*
plasina periods in an ion gyro period. To resolve all of these time and space
scales is prohibitive even with the next gencration supercomputers. There are
some problems in which the high frequencies and short scale lengths coinmunicate
effectively with the long wavelength fluctuations. 1. _.iis is the case, one cannot
make any significant si.nplifications. However, frequently the highest frequencies
and shortest scalelengths are not important ior the evo!ution of the long.st time
and space scales. Here several solutions are possible.

A common techniques is to solve a reduced set of equations for one of the
cornponents of the plasma system. This is usuelly referred to as a hybrid method.
There are a variety of hybrid models that have had consid-rable success in modeling
a wide variety of plasma phenomena. In recent years, however, implicit techniques
have undergone considerable development : Brackbill and Forslund, 1982; Friedman,
et al., 1982; Langdnn, et al., 1983|. By implicit we mean that the equations are
solved backward in time from time level 5 + 1 to time level j. This results in a
decaying of the solutions that would be unstably growing in an explicit formulation.
A simple example of this was given above for the wave equation solved in the two
dimensional electromagnetic code WAVE, Although this technique is well known in
hydrodynamics and magnetohydrodynamics, it has only recently been found to be
pract.cal in plasma sinulation. The difficulty arises because there are many more
sirnultaneous equations to be solved in the plasma system. If one were to have to
iterate on all of these equations together, the time would be prohibitive and there
would be no advantage over simpler explicit methods.

8.2 Outline of Mcthods

There is not enough space here to discuss the details of the implicit methods
which have been developed. Other papers in this volume will deal with this in
more detail as wi'l a forthcoming book in the Computational Techniques series
by Academic Press entitled 'Timescales” to be published in 1985. With some
oversimplification it can be stated that it has been found that one does not have
to iterate the simultaneous sel of equations together to obtain a stable accurate
system. There are several approaches to this problem, but with a modified set of
equations for the particles and fields one can obtain a stable system. For example,
in the moment method |Miuson, 1981; Denavit, 1981] a Nuid-like description of
the plasma is solved for implicitly with conventional implicit techniques. The
particles then are advanced with these new ficlds and used to correct the moments
which were obtained from the fluid-like treatment. At the same time the implicit
solution of the fluid equations over a large time step removes the high frequency
noise injected by the particle moments. Thus the two stages serve Lo correct ecach
other. It has been shown |Brackbiil and Forslund, 1982] that this results in a
systematic elimination of the short wavelength and high frequency waves in the



system allowing for large time and space steps. This method has been particularly
successful in studying the self-consistent turbulence generated in magnetic shock
waves|Quest, el al., 1983; Forslund, et al., 1984). The direct method |Friedman,
et al., 1981, Langdon, et al., 1983 which is derivea on more formal grounds has
similar propesties to the moment method although all the differences have yet to be
discussed in the literature. In some of the forrnulations of these implicit methods
there are still some time and space step constraints which limit the application of
the method, although it is not clear if these are in principle limitations or siinply
impleme:tation limitations.

9. Problems solved

The number of problems which have been solved by means of particle simulation
are too numerous to cite accnrately in this limited space. However the range
has extended from space physics Lo laser fusion to magnetic confinement fusion,
from collisionless shock waves Lo parametric instabilities to electron transport. For
example, an important mechanism causing an anomalous resistivity in magnetic
shock waves has veen identified with two dimensional implicit calculations with
the implizit code, VENUS |Forslund, ¢t al., 1934]. Magnetic field induced electron
transporl on the surfacce of laser fusion targets was first discovered with plasma
simuiation|Forslund and Brackbill, 1982]. Most of the information known about
how encrgetic electrons are produced by intense laser light have been obtained by
plasma simulation|Forslund, et al., 1977]. Recently in the arca of particle accel-
eration by a beating between two light waves of diflerent frequencies, limitations
due to sell-focusing, filamentation, back scattering and magnetic field generation
have all been identified in simulation before they could be observed experimen-
tally|Joshi, et al., 1984|. Frequently the results from simulations were unexpected
but are easily understood in simiple terms once they are known. This has heen
a typical path of rescarch in plasma simulation, a field which has only begun to
develop.

References

Brackbill, J. U. and D. W. Forslund, J. Comput. Phys., 40, 271, 1982,

Brackbill, J. U., D. W. Forsluna, K. 8. Quest, and D. Winske, Phys. Fluids. 27,
2682, 1984.

Buneman, O., J. Comput. Phys., 1, 517, 1967.

Denavit, J., J. Comput. Phys., 9, 75, 1972.

Denavit, J., J. Comput. Phys., 47, 337, 1981.

“orslund, D. W. and J. U. Brackbill, Phys. Rev. Letl.. 48, 1614, 1932,

Forslund, D. W., J. M. Kiudel, and K. Lee, Phys. Rev. Lett., 39, 284, 1977.

Forslund, I). W., K. B. Quest, J. U. Brackbill, and K. Lee, J. Geophys. Res., 89,
2142, 1984.

Friedinan, A., A. B. Langdon, and B.l. Cohen, Comm. Plasma Phys. Contr.
Fusion, 6, 225, 1081.

Godfrey, B. B., J. Comput. Phys., 16, 504, 1974,

Godfrey, B. B., J. Comput Phys., 19, 58, 1975.

Joshi, C., W. B. Mori, T. Katsouleas, J. M. Dawson, J. M. Kindel, and 1). W.
Forslund, Nature, 311, 525, 1984,



Langdon, A. B., J. Comput. Phys., 8, 247, 1970a. -

l.angdon, A. B., Proc. 4th Conf. on Num. Sim. of Plasmas, 1970b.

Langdon, A. B., J. Comput. Phys., 13, 247, 1973.

Langdon, A. B., and C. K.Birdsall, Phys. Fluids, 13, 2115, 1970.

Langdon, A. B., and B. F. Lasinski, Methods Comput. Phys., 16, 327, 1976.

Langdon, A. B., B. I. (’ohen, and A. Friedman, J. Comput. Phys., 51, 107, 1983.

Lewis, H. R., J. Comput. Phys., 6, 126, 1970.

Lin, A. T., J. M. Dawson, and H. Okuda, Phys. Fluids, 17, 1995, 1974.

Lindinan, E. L., J. Comput. Phys., b, 13, 1970.

Mason, R. J., J. Comput. Phys., 47, 233, 198].

Morse, R. L. and C. W. Nieclson, Phys. Fluids, 14, 830, 1971.

Nielson, C. W. and E. L. Lindman, Proc. 6th Conl. on Num. Sim. of Plasmas,
1972,

Okuda, H., J. Comput. Phys., 10, 475, 1972.

Quest, K. B., D. W. Forslund, J.U.Brackbill, and K. Lee, Geophys. Res. Letl.,
10, 471, 1983.

Sakanaka. P. H., et al., Phys. Fluids, 14, 611, 1971.



